MODELING THE IMPACT OF ASYMPTOMATIC TESTING STRATEGIES IN SCHOOLS

NATASHA MARTIN ASSOCIATE PROFESSOR DIVISION OF INFECTIONS DISEASES AND GLOBAL PUBLIC HEALTH DEPARTMENT OF MEDICINE UC SAN DIEGO

UC San Diego Return to Learn: Three Pillars

Risk Mitigation	Viral Detection	Intervention
Cleaning and sanitation	Symptomatic testing	Case isolation
Face coverings	Asymptomatic testing	Contact tracing
Physical distancing	Environmental monitoring	Exposure notification
Structural reconfiguration	County surveillance	Molecular sequencing

Interdependent and Adaptive

MATHEMATICAL MODELING INFORMING RETURN TO LEARN

Useful in examining *relative* **impact** of different policies:

- Campus housing dedensification
- Classroom maximum capacity caps and hybrid instruction
- Asymptomatic testing
- Masking and physical distancing
- Isolation, contact tracing and quarantine

Iterative & adaptive

https://college.covid19.mathematica.org https://returntolearn.ucsd.edu/about/modeling/index.htm

MODELING K-12 SCHOOL TESTING STRATEGIES

What is the benefit of entry and periodic ongoing asymptomatic testing for staff and students on SARS-CoV-2 transmission and outbreak detection?

FINDING & TESTING CARRIERS: PRE/A-SYMPTOMATIC

Carriers

Many individuals **do not know they are carriers** because they have not yet shown symptoms (or never will).

Return As they resume their daily routines, the virus will spread at even higher levels (as it is across Europe)

SARS-COV-2 TRANSMISSION MODEL

SARS-COV-2 TRANSMISSION MODEL

WHAT % OF INFECTIONS CAN BE PREVENTED WITH ENTRY & SYMPTOMATIC TESTING?

 \blacksquare R0=1.5 \blacksquare R0=2 \blacksquare R0=3

WHAT % OF INFECTIONS CAN BE PREVENTED WITH ENTRY & PERIODIC **Asymptomatic** testing?

More infections prevented with asymptomatic testing

ASYMPTOMATIC TESTING

■ R0=2 ■ R0=3

■ R0=1.5

Natasha Martin, UCSD

RELATIVE BENEFIT OF ENTRY VS ASYMPTOMATIC TESTING

Natasha Martin, UCSD

NUMBER OF LINKED CASES AT OUTBREAK DETECTION

	Number linked cases when >90% probability of detecting the outbreak from a viral introduction
Only symptomatic testing	8-15
Every 8 weeks	6-11
Every 4 weeks	5-9
Every 2 weeks	4-7
Every week	3-4

- More testing, fewer cases at outbreak detection <u>for each</u> <u>viral introduction</u>
- Testing every 2 weeks required to detect outbreak when 7 or fewer linked infections

Martin NK, DeGruttola V, and Schooley RT (submitted)

Swiss Cheese Model

You can reduce your COVID-19 risk with multiple layers of defense.

